

Performance Modeling:

Understanding the Present and Predicting the Future

David H. Bailey and Allan Snavely
29 November 2004

Abstract:

We present an overview of current research in performance modeling, focusing on efforts
underway in the Performance Evaluation Research Center (PERC). Using some new
techniques, we are able to construct performance models that can be used to project the
sustained performance of large-scale scientific programs on different systems, over a
range of job and system sizes. Such models can be used by vendors in system designs,
by computing centers in system acquisitions, and by application scientists to improve the
performance of their codes.

1. Introduction

The goal of performance modeling is to gain understanding of a computer system’s per-
formance on various applications, by means of measurement and analysis, and then to
encapsulate these characteristics in a compact formula. The resulting model can be used
to gain greater understanding of the performance phenomena involved and to project per-
formance to other system/application combinations.

We will focus here on large-scale scientific computation, although many of the tech-
niques we describe below apply equally well to single-processor systems and to business-
type applications. Also, this paper focuses on some work being done within the Perform-
ance Evaluation Research Center (PERC) [PERC], a research collaboration funded
through the U.S. Department of Energy’s Scientific Discovery through Advanced Com-
putation (SciDAC) program [SciDAC]. A number of important performance modeling
activities are also being done by other groups, for example at Los Alamos National Labo-
ratory [Hoisie].

The performance profile of a given system/application combination depends on numerous
factors, including: (1) system size; (2) system architecture; (3) processor speed; (4) multi-
level cache latency and bandwidth; (5) interprocessor network latency and bandwidth; (6)
system software efficiency; (7) type of application; (8) algorithms used; (9) programming
language used; (10) problem size; (11) amount of I/O; and others. Indeed, a comprehen-
sive model must incorporate most if not all of the above factors. Because of the difficulty
in producing a truly comprehensive model, present-day performance modeling research-
ers generally limit the scope of their models to a single system and application, allowing
only the system size and job size to vary. Nonetheless, as we shall see below, some re-
cent efforts appear to be effective over a broader range of system/application choices.

Performance models can be used to improve architecture design, inform procurement,
and guide application tuning. Unfortunately, the process of producing performance mod-
els historically has been rather expensive, requiring large amounts of computer time and
highly expert human effort. This has severely limited the number of high-end applica-
tions that can be modeled and studied. Someone has observed that, due to the difficulty
of developing performance models for new applications, as well as the increasing com-
plexity of new systems, our supercomputers have become better at predicting and ex-
plaining natural phenomena (such as the weather) than at predicting and explaining the
performance of themselves or other computers.

2. Applications of Performance Modeling

Performance modeling can be used in numerous ways. Here is a brief summary of these
usages, both present-day and future possibilities:

Runtime estimation. The most common application for a performance model is to enable
a scientist to estimate the runtime of a job when the input parameters for the job are
changed, or when a different number of processors is used in a parallel computer system.

One can also estimate the largest size of system that can be used to run a given problem
before the parallel efficiency drops to an unacceptable area.

System design. Performance models are frequently employed by computer vendors in
their design of future systems. Typically engineers construct a performance model for
one or two key applications, and then compare future technology options based on per-
formance model projections. Once performance modeling techniques are better devel-
oped, it may be possible to target many more applications and technology options in the
design process. As an example of such “what-if” investigations, application parameters
can be used to predict how performance rates would change with a larger or more highly
associative cache. In a similar way, the performance impact of various network designs
can be explored. We can even imagine that vendors could provide a variety of system
customizations, depending on the nature of the user’s anticipated applications.

System tuning. One example of using performance modeling for system tuning is given
in [Carrington2003]. Here a performance model was used to diagnose and rectify a mis-
configured MPI channel buffer, which yielded a doubling of network performance for
programs sending short messages. Along this line, Adolfy Hoisie of LANL recalls that
when a recent system was installed, its performance fell below model predictions by al-
most a factor of two. However, further analysis uncovered some system difficulties,
which, when rectified, improved performance to almost the same level the model pre-
dicted [Hoisie]. When observed performance of a system falls short of that predicted by
a performance model, it may be the system that is wrong not the model!

Application tuning. If a memory performance model is combined with application pa-
rameters, one can predict how cache hit-rates would change if a different cache-blocking
factor were used in the application. Once the optimal cache blocking has been identified,
then the code can be permanently changed. Simple performance models can even be in-
corporated into an application code, permitting on-the-fly selection of different program
options.

Performance models, by providing performance expectations based on the fundamental
computational characteristics algorithms, can also enable algorithmic choice before going
to the trouble to implement all the possible choices. For example, in some recent work
one of the present authors employed a performance model to estimate the benefit of em-
ploying an “inspector” scheme to reorder data-structures before being accessed by a
sparse-matrix solver, as part of software being developed by the SciDAC Terascale Op-
timal PDE Simulations (TOPS) project [TOPS]. It turned out that the overhead of these
“inspector” schemes is more than repaid provided the sparse-matrices are large and/or
highly randomized.

System procurement. Arguably the most compelling application of performance model-
ing, but one that heretofore has not been used much, is to simplify the selection process
of a new computing facility for a university or laboratory. At the present time, most large
system procurements involve a comparative test of several systems, using a set of appli-
cation benchmarks chosen to be typical of the expected usage. In one case that the au-

thors are aware of, 25 separate application benchmarks were specified, and numerous
other system-level benchmark tests were required as well. Preparing a set of performance
benchmarks for a large laboratory acquisition is a labor-intensive process, typically in-
volving several highly skilled staff members. Analyzing and comparing the benchmark
results also requires additional effort. These steps involved are summarized in the recent
HECRTF report [HECRTF].

What is often overlooked in this regard is that each of the prospective vendors must also
expend a comparable (or even greater) effort to implement and tune the benchmarks on
their systems. Partly due to the high personnel costs of benchmark work, computer ven-
dors often can afford only a minimal effort to implement the benchmarks, leaving little or
no resources to tune or customize the implementations for a given system, even though
such tuning and/or customization would greatly benefit the customer. In any event, ven-
dors must factor the cost of implementing and/or tuning benchmarks into the price that
they must charge to the customer if successful. These costs are further multiplied be-
cause for every successful proposal, they must prepare several unsuccessful proposals.

Once a reasonably easy-to-use performance modeling facility is available, it may be pos-
sible to greatly reduce, if not eliminate, the benchmark tests that are specified in a pro-
curement, replacing them by a measurement of certain performance model parameters for
the target systems and applications. These parameters can then be used by the computer
center staff to project performance rates for numerous system options. It may well be
that a given center will decide not to rely completely on performance model results. But
if even part of the normal application suite can be replaced, this will save considerable
resources on both sides.

3. Basic Methodology

Our framework is based upon application signatures, machine profiles and convolutions.
An application signature is a detailed but compact representation of the fundamental op-
erations performed an application, independent of the target system. A machine profile is
a representation of the capability of a system to carry out fundamental operations, inde-
pendent of the particular application. A convolution is a means to rapidly combine appli-
cation signatures with machine profiles in order to predict performance. In a nutshell, our
methodology is to

• Summarize the requirements of applications in ways that are not too expensive in
terms of time/space required to gather them but still contain sufficient detail to
enable modeling.

• Obtain the application signatures automatically.
• Generalize the signatures to represent how the application would stress arbitrary

(including future) machines.
• Extrapolate the signatures to larger problem sizes than what can be actually run at

the present time.

With regards to application signatures, note that the source code of an application can be
considered a high-level description, or application signature, of its computational re-
source requirements. However, depending on the language it may not be very compact
(Matlab is compact, while Fortran is not). Also, determining the resource requirements
the application from the source code may not be very easy (especially if the target ma-
chine does not exist!). Hence we need cheaper, faster, more flexible ways to obtain rep-
resentations suitable for performance modeling work. A minimal goal is to combine the
results of several compilation, execution, performance data analysis cycles into a signa-
ture, so these steps do not have to be repeated each time a new performance question is
asked.

A dynamic instruction trace, such as a record of each memory address accessed (using a
tool such as Dynist [Dyninst], ATOM, or MetaSim) can also be considered to be an ap-
plication signature. But it is not compact—address traces alone can run to several Gbytes
even for short-running applications—and it is not machine independent.

A general approach that we have developed to analyze applications, which has resulted in
considerable space reduction and a measure of machine independence, is the following:
(1) statically analyze, then instrument and trace an application on some set of existing
machines; (2) summarize, on-the-fly, the operations performed by the application; (3)
tally operations indexed to the source code structures that generated them; and (4) per-
form a merge operation on the summaries from each machine [Carrington2003; Sna-
vely2002; Snavely2003]. From this data, one can obtain information on memory access
patterns (namely, summaries of the stride and range of memory accesses generated by
individual memory operations) and communications patterns (namely, summaries of sizes
and type of communications performed).

The specific scheme to acquire an application signature is as follows: (1) conduct a series
of experiments tracing a program, using the techniques described above; (2) analyze the
trace by pattern detection to identify recurring sequences of messages and loads/store op-
erations; and (3) select the most important sequences of patterns. With regards to (3),
infrequent paths through the program are ignored, and sequences that map to insignificant
performance contributions are dropped.

As a simple example, the performance behavior of CG (the Conjugate Gradient bench-
mark from the NAS Parallel Benchmarks [NPB]), which is more 1000 lines long, can be
represented from a performance standpoint by one random memory access pattern. This
is because 99% of execution is spent in the following loop:

do k = rowstr(j), rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))
enddo

This loop has two floating-point operations, two stride-1 memory access patterns, and
one random memory access pattern (the indirect index of p). On almost all of today’s
deep memory hierarchy machines the performance cost of the random memory access
pattern dominates the other patterns and the floating-point work. As a practical matter, all

that is required to predict the performance of CG on a machine is the size of the problem
(which level of the memory hierarchy it fits in) and the rate at which the machine can do
random loads from that level of the memory. Thus a random memory access pattern suc-
cinctly represents the most important demand that CG puts on any machine.

Obviously, many full applications spend a significant amount of time in more than one
loop or function, and so the several patterns must be combined and weighted. Simple
addition is often not the right combining operator for these patterns, because different
types of work may be involved (say memory accesses and communication). Also, our
framework considers the impact of different compilers or different compiler flags in pro-
ducing better code (so trace results are not machine independent). Finally, we develop
models that include scaling and not just ones that work with a single problem size. For
this, we use statistical methods applied to series of traces of different input sizes and/or
CPU counts to derive a scaling model.

The second component of this performance modeling approach is to represent the re-
source capabilities of current and proposed machines, with emphasis on memory and
communications capabilities, in an application-independent form suitable for parameter-
ized modeling. In particular, we gather machine profiles, which are high-level represen-
tations of the rates at which machines can carry out basic operations (such as memory
loads and stores and message passing), including the capabilities of memory units at each
level of the memory hierarchy and the ability of machines to overlap memory operations
with other kinds of operations (e.g., floating-point or communications operations). We
then extend machine profiles to account for reduction in capability due to sharing (for
example, to express how much the memory subsystem’s or communication fabric’s capa-
bility is diminished by sharing these with competing processors). Finally, we extrapolate
to larger systems from validated machine profiles of similar but smaller systems.

To enable time tractable modeling we employ a range of simulation techniques [Carring-
ton2003; SimPoint] to combine applications signatures with machine profiles:

• Convolution methods for mapping application signatures to machine profiles to
enable time tractable statistical simulation.

• Techniques for modeling interactions between different memory access patterns
within the same loop. For example, if a loop is 50% stride-1 and 50% random
stride, we determine whether the performance is some composable function of the
these two separate performance rates.

• Techniques for modeling the effect of competition between different applications
(or task parallel programs) for shared resources. For example, if program A is
thrashing L3 cache with a large working set and a random memory access pattern,
we determine how that impacts the performance of program B with a stride-1 ac-
cess pattern and a small working set that would otherwise fits in L3.

• Techniques for defining “performance similarity” in a meaningful way. For ex-
ample, we determine whether loops that “look” the same in terms of application
signatures and memory access patterns actually perform the same. If so, we de-
fine a set of loops that span the performance space.

In one sense, cycle-accurate simulation is the performance modeling baseline. Given
enough time, and enough details about a machine, we can always explain and predict per-
formance by stepping through the code instruction by instruction. However, simulation
at this detail is exceedingly expensive. So we have developed fast-to-evaluate machine
models for current and proposed machines, which closely approximate cycle-accurate
predictions by accounting for fewer details.
Figure 1: The Convolution Method

Parallel Processor Prediction

Figure 1 shows graphically part of the process for convolving application signatures with
machine profiles in order to generate a performance model.

The convolution method allows for relatively rapid development of performance models
(full application models take 1 or 2 months now). Performance predictions are very fast
to evaluate once the models are constructed (few minutes per prediction). The results are
quite accurate. Figure 2 show typical accuracy results across a set of machines and prob-
lem sizes and CPU counts.

Performance prediction of
Application B on Machine

Machine Profile
(Machine A)
Characterization of
memory perform-
ance capabilities of
A AMachine A

Application Signature
(Application B)
Characterization of
memory operations
needed to be performed
by Application B

Convolution Method
Mapping memory usage needs of Applica-

tion B
to the capabilities of Machine A

Application B ⇔ Machine A

Machine Profile
(Machine A)

Single-Processor
Application Signature
(Application B)

Communication

Characterization of
network perform-
ance capabilities of
AAAAAMachine A

Characterization of
network operations
needed to be performed
by Application B

Convolution Method
Mapping network usage needs of Applica-

tion B
to the capabilities of Machine A

Application B ⇔ Machine A

Network
Simulator

Figure 2: Results for Parallel Ocean Program (POP). (R) is real runtime (M) is modeled (predicted)
runtime.

 POP Total Timings POP 1.4.3, x1 benchmark

0

20

40

60

80

100

120

16 32 64 128

Processors

Se
co

nd
s

pe
r S

im
ul

at
io

n
D

ay

Lemieux (R) Lemieux (M)
Blue Horizon (R) Blue Horizon (M)
Longhorn (R) Longhorn (M)
Seaborg (R) SeaBorg (M)
X1 (R) X1 (M)

4. Performance Sensitivity Studies

Reporting the accuracy of performance models in terms of model-predicted time vs. ob-
served time (as in the previous section) is mostly just a validating step for obtaining con-
fidence in the model. A more interesting and useful exercise is to explain and quantify
performance differences and to play “what if” using the model. For example, it is clear
from Figure 2 above that Lemeiux is faster across-the-board on POP x1 than is Blue Ho-
rizon. The question is why? Lemeuix has faster processors (1GHz vs. 375 MHz), and a
lower-latency network (a measured ping-pong latency of about 5 ms vs. about 19 ms), but
Blue Horizon’s network has the higher bandwidth (a measured ping-pong bandwidth of
about 350 MB/s vs. 269 MB/s). Without a model, one is left to conjecture “I guess POP
performance is more sensitive to processor performance and network latency than net-
work bandwidth,” but without solid evidence.

With a model that can accurately predict application performance based on properties of
the code and the machine, we can carry out precise modeling experiments such as that
represented in Figure 3. Here we model perturbing the Blue Horizon (BH) system (with-
Power3 processors and a Colony switch) into the TCS system (with Alpha ES640 proces-
sors and the Quadrics switch) by replacing components one by one. Figure 3 represents a
series of cases modeling the perturbing from BH to TCS, going from left to right. The
four bars for each case represent the performance of POP x1 on 16 processors, the proc-
essor and memory subsystem performance, the network bandwidth, and the network la-
tency, all normalized to that of BH.

Figure 3: Performance Sensitivity study of POP applied to proposed Lemieux upgrade

In Case 1, we model the effect of reducing the bandwidth of BH’s network to that of a
single rail of the Quadrics switch. There is no observable performance effect, as the POP
x1 problem at this size is not sensitive to a change in peak network bandwidth from
350MB/s to 269MB/s. In Case 2, we model the effect of replacing the Colony switch
with the Quadrics switch. Here there is a significant performance improvement, due to
the 5 ms latency of the Quadrics switch versus the 20 ms latency of the Colony switch.
This is evidence that the barotropic calculations in POP x1 at this size are latency sensi-
tive. In Case 3, we use Quadrics latency but the Colony bandwidth just for completeness.
In Case 4, we model keeping the Colony switch latency and bandwidth figures, but re-
placing the Power3 processors and local memory subsystem with Alpha ES640 proces-
sors and their memory subsystem. There is a substantial improvement in performance,
due mainly to the faster memory subsystem of the Alpha. The Alpha can load stride-1
data from its L2 cache at about twice the rate of the Power3, and this benefits POP x1
significantly. The last set of bars show the TCS values of performance, processor and
memory subsystem speed, network bandwidth and latency, as a ratio of the BH values.

The principal observation from the above exercise is that the model can quantify the per-
formance impact of each machine hardware component. We have carried out similar ex-
ercise for several sizes of POP problems and codes from TOPS, GAMESS. We have also
tried several applications form the DOD HPCMO workload, including for NLOM, Co-
balt60 and AVUS. In these studies we find that larger CPU count POP x1 problems be-
come more network latency sensitive and remain not-very bandwidth sensitive.

Figure 4: A generalized performance sensitivity study

We can generalize a specific architecture comparison study such as the above, by using
the model to generate a machine-independent performance sensitivity study. As an ex-
ample, Figure 4 indicates the performance impact on the 128-CPU POP x1 program of
quadrupling the speed of the CPU-memory subsystem (lumped together we call this the
processor), quadrupling the network bandwidth, reducing network latency by four, and
various combinations of these four-fold hardware improvements. The data values are
plotted in a logarithmic scale and normalized to one, so that the solid black quadrilateral
represents the execution time, network bandwidth, network latency, CPU and memory
subsystem speed of Blue Horizon. At this size, POP x1 is quite sensitive to processor
speed (a faster CPU and memory subsystem), somewhat sensitive to latency (because of
the barotropic portion of the code is communications-bound, with small-messages), and
fairly insensitive to bandwidth. In a similar way we can “zoom in” on the processor per-
formance factor. In the above results for POP, the processor axis shows modeled execu-
tion time decreasing from a four-times faster CPU with respect to clock rate (implying a
4X floating-point issue rate), but also quadruple bandwidth and one-quarter latency to all
levels of the memory hierarchy (unfortunately this may be hard or expensive to achieve
architecturally!).

5. Conclusion

We have seen that performance models enable “what-if” analyses of the implications of
improving the target machine in various dimensions. Such analyses obviously are useful
to system designers, helping them optimize system architectures for the highest sustained
performance on a target set of applications. They are potentially quite useful in helping
computing centers select the best system in an acquisition. But these methods can also be
used by application scientists to improve performance in their codes, by better under-
standing which tuning measures yield the most improvement in sustained performance.

With further improvements in this methodology, we can envision a future wherein these
techniques are embedded in application code, or even in system software, thus enabling
self-tuning applications for user codes. For example, we can conceive of an application
that performs the first of many iterations using numerous cache blocking parameters, a
separate combination on each processor, and then uses a simple performance model to
select the most favorable combination. This combination would then be used for all re-
maining iterations.

Our methods have reduced the time required for performance modeling, but much work
needs to be done here. Also, running an application to obtain the necessary trace infor-
mation multiplies the run time by a large factor (roughly 1000). The future work in this
arena will need to focus on further reducing the both the human and computer costs.

REFERENCES:

[Carrington2003] L. Carrington, A. Snavely, X. Gao, and N. Wolter, “A Performance
Prediction Framework for Scientific Applications,” ICCS Workshop on Performance
Modeling and Analysis (PMA03), June 2003, Melbourne, Australia.

[Dyninst] B. Buck and J. K. Hollingsworth, “An API for Runtime Code Patching,” Jour-
nal of Supercomputing Applications, 14(4), 2000, pp. 317-329.

[HECRTF] Report of the High-End Computing Revitalization Task Force (HECRTF), see
http://www.sc.doe.gov/ascr/hecrtfrpt.pdf.

[Hoisie] A. Hoisie, O. Lubeck, H. Wasserman, “Performance and Scalability Analysis of
Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applications,”
The International Journal of High Performance Computing Applications, vol. 14 (2000),
no. 4, pg 330-346.

[NPB] David H. Bailey, et. al, “The NAS Parallel Benchmarks,” International Journal of
Supercomputer Applications, vol. 5 (1991), no. 3, pg. 66-73.

[PERC] The Performance Evaluation Research Center (PERC), see
http://www.perc.nersc.gov.

[SimPoint] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder,
“Using SimPoint for accurate and efficient simulation,” ACM SIGMETRICS Performance
Evaluation Review, vol. 31 (2003), no. 1, pg. 318-319.

[SciDAC] Scientific Discovery through Advanced Computing (SciDAC), see
http://www.science.doe.gov/scidac.

[Snavely2002] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purka-
yastha, “A Framework for Application Performance Modeling and Prediction,” Proceed-
ings of SC2002, Nov. 2002, Baltimore, MD.

[Snaveley2003] A. Snavely, X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gimenez, and P.
Jones, “Performance Modeling of HPC Applications,” Proceedings of the Parallel Com-
puting Conference 2003, Oct. 2003, Dresden, Germany.

[TOPS] Terascale Optimal PDE Simulations (TOPS) project, see
http://www-unix.mcs.anl.gov/scidac-tops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

